MsrR, a putative cell envelope-associated element involved in Staphylococcus aureus sarA attenuation.

نویسندگان

  • Jutta Rossi
  • Markus Bischoff
  • Akihito Wada
  • Brigitte Berger-Bächi
چکیده

A novel membrane-associated protein, MsrR, was identified in Staphylococcus aureus which affects resistance to methicillin and teicoplanin, as well as the synthesis of virulence factors. MsrR belongs to the LytR-CpsA-Psr family of cell envelope-related transcriptional attenuators and was shown to be inducible by cell wall-active agents, such as beta-lactams, glycopeptides, and lysostaphin. The expression of msrR peaked in the early exponential growth phase and decreased sharply thereafter. msrR mutants showed increased sarA transcription and an earlier and higher expression of RNAIII, resulting in altered expression of virulence factors such as alpha-toxin and protein A. These observations suggest that MsrR is a new component involved in sarA attenuation and the regulatory network controlling virulence gene expression in S. aureus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.

Wall teichoic acids are cell wall polymers that maintain the integrity of the cellular envelope and contribute to the virulence of Staphylococcus aureus. Despite the central role of wall teichoic acid in S. aureus virulence, details concerning the biosynthetic pathway of the predominant wall teichoic acid polymer are lacking, and workers have relied on a presumed similarity to the putative poly...

متن کامل

Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases.

Data have been presented indicating that Staphylococcus aureus cell surface protein can be degraded by extracellular proteases produced by the same bacterium. We have found that in sarA mutant cells, which produce high amounts of four major extracellular proteases (staphylococcal serine protease [V8 protease] [SspA], cysteine protease [SspB], aureolysin [metalloprotease] [Aur], and staphopain [...

متن کامل

Staphylococcus aureus Methicillin-Resistance Factor fmtA Is Regulated by the Global Regulator SarA

fmtA encodes a low-affinity penicillin binding protein in Staphylococcus aureus. It is part of the core cell wall stimulon and is involved in methicillin resistance in S. aureus. Here, we report that the transcription factor, SarA, a pleiotropic regulator of virulence genes in S. aureus, regulates the expression of fmtA. In vitro binding studies with purified SarA revealed that it binds to spec...

متن کامل

Vancomycin Resistance in Staphylococcus aureus


The evolution of Staphylococcus aureus during the modern antibiotic era has been delineated by distinct strain emergence events, many of which include acquisition of antibiotic resistance. The relative high burden of methicillin-resistant S. aureus (MRSA) in healthcare and community settings is a major concern worldwide. Vancomycin, a glycopeptide antibiotic that inhibits cell wall biosynthesis...

متن کامل

Overexpression of MazFsa in Staphylococcus aureus induces bacteriostasis by selectively targeting mRNAs for cleavage.

The role of chromosomally encoded toxin-antitoxin (TA) loci in bacterial physiology has been under debate, with the toxin proposed as either an inducer of bacteriostasis or a mediator of programmed cell death (PCD). We report here that ectopic expression of MazF(Sa), a toxin of the TA module from Staphylococcus aureus, led to a rapid decrease in CFU counts but most cells remained viable as dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 47 8  شماره 

صفحات  -

تاریخ انتشار 2003